Gd(III) functionalized gold nanorods for multimodal imaging applications.
نویسندگان
چکیده
We demonstrate a novel noncovalent method for producing Gd(III)-functionalized gold nanorods as multimodal contrast agents for MRI and CT imaging. The ligand is connected to the surface of the gold nanorods by a noncovalent bond making the Gd(III) ions directly accessible to water molecules, and resulting in a longitudinal relaxivity as high as 21.3 mM(-1) s(-1). In addition, compared with spherical gold nanoparticles, gold nanorods have more binding sites for Gd(III) ions due to their large surface-to-volume ratio. Benefiting from the advantages of the new type of carry material and the novel fabrication approach, the multimodal imaging probes exhibit a high longitudinal relaxivity r(1) on the order of 1.1 × 10(7) mM(-1) s(-1) on a per-particle basis, which is 24 times higher than that of Gd(III)-ion-functionalized spherical gold nanoparticles. Furthermore, CT imaging shows that such nanoprobes could induce an efficient contrast enhancement when the gold concentration is at least equal to 1.31 mg ml(-1). These results demonstrate that the as-prepared Gd functionalized gold nanorods could provide a new and versatile platform for the development of multimodal imaging probes.
منابع مشابه
Functionalized Gold Nanorods for Tumor Imaging and Targeted Therapy
Gold nanorods, as an emerging noble metal nanomaterial with unique properties, have become the new exciting focus of theoretical and experimental studies in the past few years. The structure and function of gold nanorods, especially their biocompatibility, optical property, and photothermal effects, have been attracting more and more attention. Gold nanorods exhibit great potential in applicati...
متن کاملFabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications.
A novel method for preparing gold nanorods that are first coated with a thin silica film and then functionalized with single-stranded DNA (ssDNA) is presented. Coating the nanorods with 3-5 nm of silica improves their solubility and stability. Amine-modified ssDNA is attached to the silica-coated gold nanorods via a reductive amination reaction with an aldehyde trimethoxysilane monolayer. The n...
متن کاملCirculating tumor cell identification by functionalized silver-gold nanorods with multicolor, super-enhanced SERS and photothermal resonances
Nanotechnology has been extensively explored for cancer diagnostics. However, the specificity of current methods to identify simultaneously several cancer biomarkers is limited due to color overlapping of bio-conjugated nanoparticles. Here, we present a technique to increase both the molecular and spectral specificity of cancer diagnosis by using tunable silver-gold nanorods with narrow surface...
متن کاملPolyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Rheumatoid Arthritis
We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classi...
متن کاملBiofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors
Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 3 5 شماره
صفحات -
تاریخ انتشار 2011